by Elazadeh, 0 Comments
Veale, R., Hafed, Z. M. & Yoshida, M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos. Trans. R. Soc. Lond. B 372, https://doi.org/10.1098/rstb.2016.0113 (2017).
Gandhi, N. J. & Katnani, H. A. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34, 205–231 (2011).
Article
PubMed
PubMed Central
CAS
Google Scholar
Boehnke, S. E. & Munoz, D. P. On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol. 18, 544–551 (2008).
Article
PubMed
CAS
Google Scholar
Sparks, D. L. & Mays, L. E. Signal transformations required for the generation of saccadic eye movements. Annu. Rev. Neurosci. 13, 309–336 (1990).
Article
PubMed
CAS
Google Scholar
Basso, M. A. & May, P. J. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. https://doi.org/10.1146/annurev-vision-102016-061234 (2017).
Previc, F. H. Functional specialization in the lower and upper visual-fields in humans—its ecological origins and neurophysiological implications. Behav. Brain Sci. 13, 519–575 (1990).
Article
Google Scholar
Hafed, Z. M. & Chen, C.-Y. Sharper, stronger, faster upper visual field representation in primate superior colliculus. Curr. Biol. https://doi.org/10.1016/j.cub.2016.04.059 (2016).
Soares, S. C., Maior, R. S., Isbell, L. A., Tomaz, C. & Nishijo, H. Fast detector/first responder: interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Front. Neurosci. 11, 67 (2017).
Article
PubMed
PubMed Central
Google Scholar
Ruderman, D. L. & Bialek, W. Statistics of natural images: scaling in the woods. Phys. Rev. Lett. 73, 814–817 (1994).
ADS
Article
PubMed
CAS
Google Scholar
Tolhurst, D. J., Tadmor, Y. & Chao, T. Amplitude spectra of natural images. Ophthalmic Physiol. Opt. 12, 229–232 (1992).
Article
PubMed
CAS
Google Scholar
Bredfeldt, C. E. & Ringach, D. L. Dynamics of spatial frequency tuning in macaque V1. J. Neurosci. 22, 1976–1984 (2002).
Article
PubMed
CAS
Google Scholar
Mazer, J. A., Vinje, W. E., McDermott, J., Schiller, P. H. & Gallant, J. L. Spatial frequency and orientation tuning dynamics in area V1. Proc. Natl Acad. Sci. USA 99, 1645–1650 (2002).
ADS
Article
PubMed
CAS
Google Scholar
Purushothaman, G., Chen, X., Yampolsky, D. & Casagrande, V. A. Neural mechanisms of coarse-to-fine discrimination in the visual cortex. J. Neurophysiol. 112, 2822–2833 (2014).
Article
PubMed
PubMed Central
Google Scholar
Frazor, R. A., Albrecht, D. G., Geisler, W. S. & Crane, A. M. Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function. J. Neurophysiol. 91, 2607–2627 (2004).
Article
PubMed
Google Scholar
Allen, E. A. & Freeman, R. D. Dynamic spatial processing originates in early visual pathways. J. Neurosci. 26, 11763–11774 (2006).
Article
PubMed
CAS
Google Scholar
Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).
ADS
Article
PubMed
CAS
Google Scholar
van Hateren, J. H. & van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Biol. Sci. 265, 359–366 (1998).
Article
PubMed
PubMed Central
Google Scholar
Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).
Article
PubMed
CAS
Google Scholar
Breitmeyer, B. G. Simple reaction time as a measure of the temporal response properties of transient and sustained channels. Vision Res. 15, 1411–1412 (1975).
Article
PubMed
CAS
Google Scholar
Ludwig, C. J., Gilchrist, I. D. & McSorley, E. The influence of spatial frequency and contrast on saccade latencies. Vis. Res. 44, 2597–2604 (2004).
Article
PubMed
Google Scholar
White, B. J., Stritzke, M. & Gegenfurtner, K. R. Saccadic facilitation in natural backgrounds. Curr. Biol. 18, 124–128 (2008).
Article
PubMed
CAS
Google Scholar
White, B. J. et al. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat. Commun. 8, 14263 (2017).
ADS
Article
PubMed
PubMed Central
CAS
Google Scholar
Krauzlis, R. J., Lovejoy, L. P. & Zenon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, 165–182 (2013).
Article
PubMed
CAS
Google Scholar
Chen, C. Y. & Hafed, Z. M. Postmicrosaccadic enhancement of slow eye movements. J. Neurosci. 33, 5375–5386 (2013).
Article
PubMed
CAS
Google Scholar
Chen, C. Y., Ignashchenkova, A., Thier, P. & Hafed, Z. M. Neuronal response gain enhancement prior to microsaccades. Curr. Biol. 25, 2065–2074 (2015).
Article
PubMed
CAS
Google Scholar
Marino, R. A. et al. Linking visual response properties in the superior colliculus to saccade behavior. Eur. J. Neurosci. 35, 1738–1752 (2012).
Article
PubMed
Google Scholar
Campbell, F. W. & Gubisch, R. W. Optical quality of the human eye. J. Physiol. 186, 558–578 (1966).
Article
PubMed
PubMed Central
CAS
Google Scholar
Rovamo, J., Virsu, V. & Nasanen, R. Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54–56 (1978).
ADS
Article
PubMed
CAS
Google Scholar
Li, X. & Basso, M. A. Preparing to move increases the sensitivity of superior colliculus neurons. J. Neurosci. 28, 4561–4577 (2008).
Article
PubMed
CAS
Google Scholar
Kiorpes, L. & Kiper, D. C. Development of contrast sensitivity across the visual field in macaque monkeys (Macaca nemestrina). Vis. Res. 36, 239–247 (1996).
Article
PubMed
CAS
Google Scholar
Irvin, G. E., Casagrande, V. A. & Norton, T. T. Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Vis. Neurosci. 10, 363–373 (1993).
Article
PubMed
CAS
Google Scholar
De Valois, R. L., Albrecht, D. G. & Thorell, L. G. Spatial frequency selectivity of cells in macaque visual cortex. Vis. Res. 22, 545–559 (1982).
Article
PubMed
Google Scholar
Desimone, R. & Schein, S. J. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J. Neurophysiol. 57, 835–868 (1987).
Article
PubMed
CAS
Google Scholar
Levitt, J. B., Kiper, D. C. & Movshon, J. A. Receptive fields and functional architecture of macaque V2. J. Neurophysiol. 71, 2517–2542 (1994).
Article
PubMed
CAS
Google Scholar
Lu, Y. et al. Revealing detail along the visual hierarchy: neural clustering preserves acuity from V1 to V4. Neuron 98, 417–428 (2018). e413.
Article
PubMed
CAS
Google Scholar
Merigan, W. H. & Katz, L. M. Spatial resolution across the macaque retina. Vis. Res. 30, 985–991 (1990).
Article
PubMed
CAS
Google Scholar
Chen, C. Y. & Hafed, Z. M. A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus. J. Neurophysiol., jn 00911 jn 02016, https://doi.org/10.1152/jn.00911.2016 (2017).
Bellet, J., Chen, C. Y. & Hafed, Z. M. Sequential hemifield gating of alpha and beta behavioral performance oscillations after microsaccades. J. Neurophysiol., jn 00253 jn 02017, https://doi.org/10.1152/jn.00253.2017 (2017).
Hall, N. J. & Colby, C. L. Express saccades and superior colliculus responses are sensitive to short-wavelength cone contrast. Proc. Natl Acad. Sci. USA 113, 6743–6748, https://doi.org/10.1073/pnas.1600095113 (2016).
White, B. J., Boehnke, S. E., Marino, R. A., Itti, L. & Munoz, D. P. Color-related signals in the primate superior colliculus. J. Neurosci. 29, 12159–12166 (2009).
Article
PubMed
CAS
Google Scholar
Herman, J. P. & Krauzlis, R. J. Color-change detection activity in the primate superior colliculus. eNeuro 4, https://doi.org/10.1523/ENEURO.0046-17.2017 (2017).
Nguyen, M. N. et al. Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Front. Behav. Neurosci. 8, 85 (2014).
PubMed
PubMed Central
Google Scholar
Johnson, M. H. Subcortical face processing. Nat. Rev. Neurosci. 6, 766–774 (2005).
Article
PubMed
CAS
Google Scholar
Weiskrantz, L., Warrington, E. K., Sanders, M. D. & Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97, 709–728 (1974).
Article
PubMed
CAS
Google Scholar
Yoshida, M., Takaura, K., Kato, R., Ikeda, T. & Isa, T. Striate cortical lesions affect deliberate decision and control of saccade: implication for blindsight. J. Neurosci. 28, 10517–10530 (2008).
Article
PubMed
CAS
Google Scholar
Yoshida, M., Hafed, Z. M. & Isa, T. Informative cues facilitate saccadic localization in blindsight monkeys. Front. Syst. Neurosci. 11, 5 (2017).
Article
PubMed
PubMed Central
Google Scholar
Sahraie, A., Weiskrantz, L., Trevethan, C. T., Cruce, R. & Murray, A. D. Psychophysical and pupillometric study of spatial channels of visual processing in blindsight. Exp. Brain Res. 143, 249–256 (2002).
Article
PubMed
CAS
Google Scholar
Trevethan, C. T. & Sahraie, A. Spatial and temporal processing in a subject with cortical blindness following occipital surgery. Neuropsychologia 41, 1296–1306 (2003).
Article
PubMed
Google Scholar
Sahraie, A., Hibbard, P. B., Trevethan, C. T., Ritchie, K. L. & Weiskrantz, L. Consciousness of the first order in blindsight. Proc. Natl Acad. Sci. USA 107, 21217–21222 (2010).
ADS
Article
PubMed
Google Scholar
Schiller, P. H., Malpeli, J. G. & Schein, S. J. Composition of geniculostriate input ot superior colliculus of the rhesus monkey. J. Neurophysiol. 42, 1124–1133 (1979).
Article
PubMed
CAS
Google Scholar
Schmid, M. C. et al. Blindsight depends on the lateral geniculate nucleus. Nature 466, 373–377 (2010).
ADS
Article
PubMed
PubMed Central
CAS
Google Scholar
Tailby, C., Cheong, S. K., Pietersen, A. N., Solomon, S. G. & Martin, P. R. Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys. J. Physiol.-Lond. 590, 4061–4077 (2012).
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaplan, E. & Shapley, R. M. X and Y cells in the lateral geniculate nucleus of macaque monkeys. J. Physiol. 330, 125–143 (1982).
Article
PubMed
PubMed Central
CAS
Google Scholar
Burr, D. C., Morrone, M. C. & Ross, J. Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994).
ADS
Article
PubMed
CAS
Google Scholar
Hass, C. A. & Horwitz, G. D. Effects of microsaccades on contrast detection and V1 responses in macaques. J. Vis. 11, 1–17 (2011).
Article
PubMed
PubMed Central
Google Scholar
Kleiser, R., Seitz, R. J. & Krekelberg, B. Neural correlates of saccadic suppression in humans. Curr. Biol. 14, 386–390 (2004).
Article
PubMed
CAS
Google Scholar
Ramcharan, E. J., Gnadt, J. W. & Sherman, S. M. The effects of saccadic eye movements on the activity of geniculate relay neurons in the monkey. Vis. Neurosci. 18, 253–258 (2001).
Article
PubMed
CAS
Google Scholar
Reppas, J. B., Usrey, W. M. & Reid, R. C. Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Neuron 35, 961–974 (2002).
Article
PubMed
CAS
Google Scholar
Royal, D. W., Sary, G., Schall, J. D. & Casagrande, V. A. Correlates of motor planning and postsaccadic fixation in the macaque monkey lateral geniculate nucleus. Exp. Brain Res. 168, 62–75 (2006).
Article
PubMed
CAS
Google Scholar
Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).
Article
PubMed
CAS
Google Scholar
Maunsell, J. H. & Gibson, J. R. Visual response latencies in striate cortex of the macaque monkey. J. Neurophysiol. 68, 1332–1344 (1992).
Article
PubMed
CAS
Google Scholar
Lee, J., Kim, H. R. & Lee, C. Trial-to-trial variability of spike response of V1 and saccadic response time. J. Neurophysiol. 104, 2556–2572 (2010).
Article
PubMed
Google Scholar
Pollack, J. G. & Hickey, T. L. The distribution of retino-collicular axon terminals in rhesus monkey. J. Comp. Neurol. 185, 587–602 (1979).
Article
PubMed
CAS
Google Scholar
Hafed, Z. M., Chen, C.-Y. & Tian, X. Vision, perception, and attention through the lens of microsaccades: mechanisms and implications. Front. Syst. Neurosci. 9, 167 (2015).
Article
PubMed
PubMed Central
Google Scholar
Hafed, Z. M. & Ignashchenkova, A. On the dissociation between microsaccade rate and direction after peripheral cues: microsaccadic inhibition revisited. J. Neurosci. 33, 16220–16235 (2013).
Article
PubMed
CAS
Google Scholar
Tian, X., Yoshida, M. & Hafed, Z. M. A microsaccadic account of attentional capture and inhibition of return in Posner cueing. Front. Syst. Neurosci. 10, 23 (2016).
Article
PubMed
PubMed Central
Google Scholar
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
Article
PubMed
CAS
Google Scholar
Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).
Article
PubMed
CAS
Google Scholar
Kleiner, M., Brainard, D. & Pelli, D. G. What’s new in Psychtoolbox-3? (Abstract). Perception 36, 14 (2007).
Schiller, P. H. & Koerner, F. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 34, 920–936 (1971).
Article
PubMed
CAS
Google Scholar
Marrocco, R. T. & Li, R. H. Monkey superior colliculus: properties of single cells and their afferent inputs. J. Neurophysiol. 40, 844–860 (1977).
Article
PubMed
CAS
Google Scholar
Campbell, F. W. & Robson, J. G. Application of Fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1968).
Article
PubMed
PubMed Central
CAS
Google Scholar
Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).
Article
PubMed
CAS
Google Scholar
Legendy, C. R. & Salcman, M. Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J. Neurophysiol. 53, 926–939 (1985).
Article
PubMed
CAS
Google Scholar