x
EZADEH

    Book Now

    • 27-31 Wright St, Clayton VIC 3168
    • [email protected]
    EZADEH
    • [email protected]
    • 27-31 Wright St, Clayton VIC 3168
    • Contact
    • Home
    • My research
    • My Papers
    • Blog
    • Contact
    Logo

    Contact Info

    • Chicago 12, Melborne City, USA
    • +88 01682648101
    • [email protected]

    Blog Details

      EZADEH > news > Journals > Spatial frequency sensitivity in macaque midbrain – Nature Communications

    10Apr

    Spatial frequency sensitivity in macaque midbrain – Nature Communications

    by Elazadeh,  0 Comments

    • Veale, R., Hafed, Z. M. & Yoshida, M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos. Trans. R. Soc. Lond. B 372, https://doi.org/10.1098/rstb.2016.0113 (2017).

    • Gandhi, N. J. & Katnani, H. A. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34, 205–231 (2011).

      Article
      PubMed
      PubMed Central
      CAS

      Google Scholar

    • Boehnke, S. E. & Munoz, D. P. On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol. 18, 544–551 (2008).

      Article
      PubMed
      CAS

      Google Scholar

    • Sparks, D. L. & Mays, L. E. Signal transformations required for the generation of saccadic eye movements. Annu. Rev. Neurosci. 13, 309–336 (1990).

      Article
      PubMed
      CAS

      Google Scholar

    • Basso, M. A. & May, P. J. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. https://doi.org/10.1146/annurev-vision-102016-061234 (2017).

    • Previc, F. H. Functional specialization in the lower and upper visual-fields in humans—its ecological origins and neurophysiological implications. Behav. Brain Sci. 13, 519–575 (1990).

      Article

      Google Scholar

    • Hafed, Z. M. & Chen, C.-Y. Sharper, stronger, faster upper visual field representation in primate superior colliculus. Curr. Biol. https://doi.org/10.1016/j.cub.2016.04.059 (2016).

    • Soares, S. C., Maior, R. S., Isbell, L. A., Tomaz, C. & Nishijo, H. Fast detector/first responder: interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Front. Neurosci. 11, 67 (2017).

      Article
      PubMed
      PubMed Central

      Google Scholar

    • Ruderman, D. L. & Bialek, W. Statistics of natural images: scaling in the woods. Phys. Rev. Lett. 73, 814–817 (1994).

      ADS
      Article
      PubMed
      CAS

      Google Scholar

    • Tolhurst, D. J., Tadmor, Y. & Chao, T. Amplitude spectra of natural images. Ophthalmic Physiol. Opt. 12, 229–232 (1992).

      Article
      PubMed
      CAS

      Google Scholar

    • Bredfeldt, C. E. & Ringach, D. L. Dynamics of spatial frequency tuning in macaque V1. J. Neurosci. 22, 1976–1984 (2002).

      Article
      PubMed
      CAS

      Google Scholar

    • Mazer, J. A., Vinje, W. E., McDermott, J., Schiller, P. H. & Gallant, J. L. Spatial frequency and orientation tuning dynamics in area V1. Proc. Natl Acad. Sci. USA 99, 1645–1650 (2002).

      ADS
      Article
      PubMed
      CAS

      Google Scholar

    • Purushothaman, G., Chen, X., Yampolsky, D. & Casagrande, V. A. Neural mechanisms of coarse-to-fine discrimination in the visual cortex. J. Neurophysiol. 112, 2822–2833 (2014).

      Article
      PubMed
      PubMed Central

      Google Scholar

    • Frazor, R. A., Albrecht, D. G., Geisler, W. S. & Crane, A. M. Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function. J. Neurophysiol. 91, 2607–2627 (2004).

      Article
      PubMed

      Google Scholar

    • Allen, E. A. & Freeman, R. D. Dynamic spatial processing originates in early visual pathways. J. Neurosci. 26, 11763–11774 (2006).

      Article
      PubMed
      CAS

      Google Scholar

    • Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

      ADS
      Article
      PubMed
      CAS

      Google Scholar

    • van Hateren, J. H. & van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Biol. Sci. 265, 359–366 (1998).

      Article
      PubMed
      PubMed Central

      Google Scholar

    • Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

      Article
      PubMed
      CAS

      Google Scholar

    • Breitmeyer, B. G. Simple reaction time as a measure of the temporal response properties of transient and sustained channels. Vision Res. 15, 1411–1412 (1975).

      Article
      PubMed
      CAS

      Google Scholar

    • Ludwig, C. J., Gilchrist, I. D. & McSorley, E. The influence of spatial frequency and contrast on saccade latencies. Vis. Res. 44, 2597–2604 (2004).

      Article
      PubMed

      Google Scholar

    • White, B. J., Stritzke, M. & Gegenfurtner, K. R. Saccadic facilitation in natural backgrounds. Curr. Biol. 18, 124–128 (2008).

      Article
      PubMed
      CAS

      Google Scholar

    • White, B. J. et al. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat. Commun. 8, 14263 (2017).

      ADS
      Article
      PubMed
      PubMed Central
      CAS

      Google Scholar

    • Krauzlis, R. J., Lovejoy, L. P. & Zenon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, 165–182 (2013).

      Article
      PubMed
      CAS

      Google Scholar

    • Chen, C. Y. & Hafed, Z. M. Postmicrosaccadic enhancement of slow eye movements. J. Neurosci. 33, 5375–5386 (2013).

      Article
      PubMed
      CAS

      Google Scholar

    • Chen, C. Y., Ignashchenkova, A., Thier, P. & Hafed, Z. M. Neuronal response gain enhancement prior to microsaccades. Curr. Biol. 25, 2065–2074 (2015).

      Article
      PubMed
      CAS

      Google Scholar

    • Marino, R. A. et al. Linking visual response properties in the superior colliculus to saccade behavior. Eur. J. Neurosci. 35, 1738–1752 (2012).

      Article
      PubMed

      Google Scholar

    • Campbell, F. W. & Gubisch, R. W. Optical quality of the human eye. J. Physiol. 186, 558–578 (1966).

      Article
      PubMed
      PubMed Central
      CAS

      Google Scholar

    • Rovamo, J., Virsu, V. & Nasanen, R. Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54–56 (1978).

      ADS
      Article
      PubMed
      CAS

      Google Scholar

    • Li, X. & Basso, M. A. Preparing to move increases the sensitivity of superior colliculus neurons. J. Neurosci. 28, 4561–4577 (2008).

      Article
      PubMed
      CAS

      Google Scholar

    • Kiorpes, L. & Kiper, D. C. Development of contrast sensitivity across the visual field in macaque monkeys (Macaca nemestrina). Vis. Res. 36, 239–247 (1996).

      Article
      PubMed
      CAS

      Google Scholar

    • Irvin, G. E., Casagrande, V. A. & Norton, T. T. Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Vis. Neurosci. 10, 363–373 (1993).

      Article
      PubMed
      CAS

      Google Scholar

    • De Valois, R. L., Albrecht, D. G. & Thorell, L. G. Spatial frequency selectivity of cells in macaque visual cortex. Vis. Res. 22, 545–559 (1982).

      Article
      PubMed

      Google Scholar

    • Desimone, R. & Schein, S. J. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J. Neurophysiol. 57, 835–868 (1987).

      Article
      PubMed
      CAS

      Google Scholar

    • Levitt, J. B., Kiper, D. C. & Movshon, J. A. Receptive fields and functional architecture of macaque V2. J. Neurophysiol. 71, 2517–2542 (1994).

      Article
      PubMed
      CAS

      Google Scholar

    • Lu, Y. et al. Revealing detail along the visual hierarchy: neural clustering preserves acuity from V1 to V4. Neuron 98, 417–428 (2018). e413.

      Article
      PubMed
      CAS

      Google Scholar

    • Merigan, W. H. & Katz, L. M. Spatial resolution across the macaque retina. Vis. Res. 30, 985–991 (1990).

      Article
      PubMed
      CAS

      Google Scholar

    • Chen, C. Y. & Hafed, Z. M. A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus. J. Neurophysiol., jn 00911 jn 02016, https://doi.org/10.1152/jn.00911.2016 (2017).

    • Bellet, J., Chen, C. Y. & Hafed, Z. M. Sequential hemifield gating of alpha and beta behavioral performance oscillations after microsaccades. J. Neurophysiol., jn 00253 jn 02017, https://doi.org/10.1152/jn.00253.2017 (2017).

    • Hall, N. J. & Colby, C. L. Express saccades and superior colliculus responses are sensitive to short-wavelength cone contrast. Proc. Natl Acad. Sci. USA 113, 6743–6748, https://doi.org/10.1073/pnas.1600095113 (2016).

    • White, B. J., Boehnke, S. E., Marino, R. A., Itti, L. & Munoz, D. P. Color-related signals in the primate superior colliculus. J. Neurosci. 29, 12159–12166 (2009).

      Article
      PubMed
      CAS

      Google Scholar

    • Herman, J. P. & Krauzlis, R. J. Color-change detection activity in the primate superior colliculus. eNeuro 4, https://doi.org/10.1523/ENEURO.0046-17.2017 (2017).

    • Nguyen, M. N. et al. Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Front. Behav. Neurosci. 8, 85 (2014).

      PubMed
      PubMed Central

      Google Scholar

    • Johnson, M. H. Subcortical face processing. Nat. Rev. Neurosci. 6, 766–774 (2005).

      Article
      PubMed
      CAS

      Google Scholar

    • Weiskrantz, L., Warrington, E. K., Sanders, M. D. & Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97, 709–728 (1974).

      Article
      PubMed
      CAS

      Google Scholar

    • Yoshida, M., Takaura, K., Kato, R., Ikeda, T. & Isa, T. Striate cortical lesions affect deliberate decision and control of saccade: implication for blindsight. J. Neurosci. 28, 10517–10530 (2008).

      Article
      PubMed
      CAS

      Google Scholar

    • Yoshida, M., Hafed, Z. M. & Isa, T. Informative cues facilitate saccadic localization in blindsight monkeys. Front. Syst. Neurosci. 11, 5 (2017).

      Article
      PubMed
      PubMed Central

      Google Scholar

    • Sahraie, A., Weiskrantz, L., Trevethan, C. T., Cruce, R. & Murray, A. D. Psychophysical and pupillometric study of spatial channels of visual processing in blindsight. Exp. Brain Res. 143, 249–256 (2002).

      Article
      PubMed
      CAS

      Google Scholar

    • Trevethan, C. T. & Sahraie, A. Spatial and temporal processing in a subject with cortical blindness following occipital surgery. Neuropsychologia 41, 1296–1306 (2003).

      Article
      PubMed

      Google Scholar

    • Sahraie, A., Hibbard, P. B., Trevethan, C. T., Ritchie, K. L. & Weiskrantz, L. Consciousness of the first order in blindsight. Proc. Natl Acad. Sci. USA 107, 21217–21222 (2010).

      ADS
      Article
      PubMed

      Google Scholar

    • Schiller, P. H., Malpeli, J. G. & Schein, S. J. Composition of geniculostriate input ot superior colliculus of the rhesus monkey. J. Neurophysiol. 42, 1124–1133 (1979).

      Article
      PubMed
      CAS

      Google Scholar

    • Schmid, M. C. et al. Blindsight depends on the lateral geniculate nucleus. Nature 466, 373–377 (2010).

      ADS
      Article
      PubMed
      PubMed Central
      CAS

      Google Scholar

    • Tailby, C., Cheong, S. K., Pietersen, A. N., Solomon, S. G. & Martin, P. R. Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys. J. Physiol.-Lond. 590, 4061–4077 (2012).

      Article
      PubMed
      PubMed Central
      CAS

      Google Scholar

    • Kaplan, E. & Shapley, R. M. X and Y cells in the lateral geniculate nucleus of macaque monkeys. J. Physiol. 330, 125–143 (1982).

      Article
      PubMed
      PubMed Central
      CAS

      Google Scholar

    • Burr, D. C., Morrone, M. C. & Ross, J. Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994).

      ADS
      Article
      PubMed
      CAS

      Google Scholar

    • Hass, C. A. & Horwitz, G. D. Effects of microsaccades on contrast detection and V1 responses in macaques. J. Vis. 11, 1–17 (2011).

      Article
      PubMed
      PubMed Central

      Google Scholar

    • Kleiser, R., Seitz, R. J. & Krekelberg, B. Neural correlates of saccadic suppression in humans. Curr. Biol. 14, 386–390 (2004).

      Article
      PubMed
      CAS

      Google Scholar

    • Ramcharan, E. J., Gnadt, J. W. & Sherman, S. M. The effects of saccadic eye movements on the activity of geniculate relay neurons in the monkey. Vis. Neurosci. 18, 253–258 (2001).

      Article
      PubMed
      CAS

      Google Scholar

    • Reppas, J. B., Usrey, W. M. & Reid, R. C. Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Neuron 35, 961–974 (2002).

      Article
      PubMed
      CAS

      Google Scholar

    • Royal, D. W., Sary, G., Schall, J. D. & Casagrande, V. A. Correlates of motor planning and postsaccadic fixation in the macaque monkey lateral geniculate nucleus. Exp. Brain Res. 168, 62–75 (2006).

      Article
      PubMed
      CAS

      Google Scholar

    • Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).

      Article
      PubMed
      CAS

      Google Scholar

    • Maunsell, J. H. & Gibson, J. R. Visual response latencies in striate cortex of the macaque monkey. J. Neurophysiol. 68, 1332–1344 (1992).

      Article
      PubMed
      CAS

      Google Scholar

    • Lee, J., Kim, H. R. & Lee, C. Trial-to-trial variability of spike response of V1 and saccadic response time. J. Neurophysiol. 104, 2556–2572 (2010).

      Article
      PubMed

      Google Scholar

    • Pollack, J. G. & Hickey, T. L. The distribution of retino-collicular axon terminals in rhesus monkey. J. Comp. Neurol. 185, 587–602 (1979).

      Article
      PubMed
      CAS

      Google Scholar

    • Hafed, Z. M., Chen, C.-Y. & Tian, X. Vision, perception, and attention through the lens of microsaccades: mechanisms and implications. Front. Syst. Neurosci. 9, 167 (2015).

      Article
      PubMed
      PubMed Central

      Google Scholar

    • Hafed, Z. M. & Ignashchenkova, A. On the dissociation between microsaccade rate and direction after peripheral cues: microsaccadic inhibition revisited. J. Neurosci. 33, 16220–16235 (2013).

      Article
      PubMed
      CAS

      Google Scholar

    • Tian, X., Yoshida, M. & Hafed, Z. M. A microsaccadic account of attentional capture and inhibition of return in Posner cueing. Front. Syst. Neurosci. 10, 23 (2016).

      Article
      PubMed
      PubMed Central

      Google Scholar

    • Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

      Article
      PubMed
      CAS

      Google Scholar

    • Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

      Article
      PubMed
      CAS

      Google Scholar

    • Kleiner, M., Brainard, D. & Pelli, D. G. What’s new in Psychtoolbox-3? (Abstract). Perception 36, 14 (2007).

    • Schiller, P. H. & Koerner, F. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 34, 920–936 (1971).

      Article
      PubMed
      CAS

      Google Scholar

    • Marrocco, R. T. & Li, R. H. Monkey superior colliculus: properties of single cells and their afferent inputs. J. Neurophysiol. 40, 844–860 (1977).

      Article
      PubMed
      CAS

      Google Scholar

    • Campbell, F. W. & Robson, J. G. Application of Fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1968).

      Article
      PubMed
      PubMed Central
      CAS

      Google Scholar

    • Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

      Article
      PubMed
      CAS

      Google Scholar

    • Legendy, C. R. & Salcman, M. Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J. Neurophysiol. 53, 926–939 (1985).

      Article
      PubMed
      CAS

      Google Scholar

    ezadeh© 2022 All Right Reserved