x
EZADEH

    Book Now

    • 27-31 Wright St, Clayton VIC 3168
    • [email protected]
    EZADEH
    • [email protected]
    • 27-31 Wright St, Clayton VIC 3168
    • Contact
    • Home
    • My research
    • My Papers
    • Blog
    • Contact
    Logo

    Contact Info

    • Chicago 12, Melborne City, USA
    • +88 01682648101
    • [email protected]

    Blog Details

      EZADEH > news > Journals > Breathing matters – Nature Reviews Neuroscience

    08Jun

    Breathing matters – Nature Reviews Neuroscience

    by Elazadeh,  0 Comments

    • Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W. & Feldman, J. L. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991). This seminal work announced the preBötC, which was identified and named in reference 15 cited therein.

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Schwarzacher, S. W., Smith, J. C. & Richter, D. W. Pre-Bötzinger complex in the cat. J. Neurophysiol. 73, 1452–1461 (1995).

      PubMed
      Article
      CAS

      Google Scholar

    • Schwarzacher, S. W., Rüb, U. & Deller, T. Neuroanatomical characteristics of the human pre-Bötzinger Complex and its involvement in neurodegenerative brainstem diseases. Brain J. Neurol. 134, 24–35 (2011).

      Article

      Google Scholar

    • Tupal, S. et al. Testing the role of preBötzinger complex somatostatin neurons in respiratory and vocal behaviors. Eur. J. Neurosci. 40, 3067–3077 (2014).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Wenninger, J. M. et al. Large lesions in the pre-Bötzinger complex area eliminate eupneic respiratory rhythm in awake goats. J. Appl. Physiol. 97, 1629–1636 (2004).

      PubMed
      Article
      CAS

      Google Scholar

    • Pantaleo, T., Mutolo, D., Cinelli, E. & Bongianni, F. Respiratory responses to somatostatin microinjections into the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Neurosci. Lett. 498, 26–30 (2011).

      PubMed
      Article
      CAS

      Google Scholar

    • Bongianni, F., Mutolo, D., Cinelli, E. & Pantaleo, T. Respiratory responses induced by blockades of GABA and glycine receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Brain Res. 1344, 134–147 (2010).

      PubMed
      Article
      CAS

      Google Scholar

    • Smith, J. C., Morrison, D. E., Ellenberger, H. H., Otto, M. R. & Feldman, J. L. Brainstem projections to the major respiratory neuron populations in the medulla of the cat. J. Comp. Neurol. 281, 69–96 (1989).

      PubMed
      Article
      CAS

      Google Scholar

    • Dobbins, E. G. & Feldman, J. L. Brainstem network controlling descending drive to phrenic motoneurons in rat. J. Comp. Neurol. 347, 64–86 (1994).

      PubMed
      Article
      CAS

      Google Scholar

    • Wu, J. et al. A V0 core neuronal circuit for inspiration. Nat. Commun. 8, 544 (2017).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Tan, W., Pagliardini, S., Yang, P., Janczewski, W. A. & Feldman, J. L. Projections of preBötzinger Complex neurons in adult rats. J. Comp. Neurol. 518, 1862–1878 (2010).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Yackle, K. et al. Breathing control center neurons that promote arousal in mice. Science 355, 1411–1415 (2017).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Yang, C. & Feldman, J. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J. Comp. Neurol. 526, 1389–1402 (2018).

    • Funk, G. D., Smith, J. C. & Feldman, J. L. Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids. J. Neurophysiol. 70, 1497–1515 (1993).

      PubMed
      Article
      CAS

      Google Scholar

    • Johnson, S. M., Smith, J. C. & Feldman, J. L. Modulation of respiratory rhythm in vitro: role of Gi/o protein-mediated mechanisms. J. Appl. Physiol. 80, 2120–2133 (1996).

      PubMed
      Article
      CAS

      Google Scholar

    • Gray, P. A., Rekling, J. C., Bocchiaro, C. M. & Feldman, J. L. Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger Complex. Science 286, 1566–1568 (1999). This report demonstrates that neuropeptide receptor expression characterizes constituent preBötC rhythmogenic neurons and demarcates the borders of the preBötC.

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Stornetta, R. L. et al. A group of glutamatergic interneurons expressing high levels of both neurokinin-1 receptors and somatostatin identifies the region of the pre-Bötzinger Complex. J. Comp. Neurol. 455, 499–512 (2003).

      PubMed
      Article
      CAS

      Google Scholar

    • Wang, H., Stornetta, R. L., Rosin, D. L. & Guyenet, P. G. Neurokinin-1 receptor-immunoreactive neurons of the ventral respiratory group in the rat. J. Comp. Neurol. 434, 128–146 (2001).

      PubMed
      Article
      CAS

      Google Scholar

    • Guyenet, P. G. & Wang, H. Pre-Bötzinger neurons with preinspiratory discharges ‘in vivo’ express NK1 receptors in the rat. J. Neurophysiol. 86, 438–446 (2001).

      PubMed
      Article
      CAS

      Google Scholar

    • Hayes, J. A. & Del Negro, C. A. Neurokinin receptor-expressing pre-Bötzinger complex neurons in neonatal mice studied in vitro. J. Neurophysiol. 97, 4215–4224 (2007).

      PubMed
      Article
      CAS

      Google Scholar

    • Liu, Y.-Y. et al. Substance P and enkephalinergic synapses onto neurokinin-1 receptor-immunoreactive neurons in the pre-Bötzinger complex of rats. Eur. J. Neurosci. 19, 65–75 (2004).

      PubMed
      Article

      Google Scholar

    • Peña, F. & Ramirez, J.-M. Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J. Neurosci. 24, 7549–7556 (2004).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Ramírez-Jarquín, J. O. et al. Somatostatin modulates generation of inspiratory rhythms and determines asphyxia survival. Peptides 34, 360–372 (2012).

      PubMed
      Article
      CAS

      Google Scholar

    • Llona, I. & Eugenín, J. Central actions of somatostatin in the generation and control of breathing. Biol. Res. 38, 347–352 (2005).

      PubMed
      Article
      CAS

      Google Scholar

    • Rekling, J. C., Champagnat, J. & Denavit-Saubié, M. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 75, 811–819 (1996).

      PubMed
      Article
      CAS

      Google Scholar

    • Gray, P. A., Janczewski, W. A., Mellen, N., McCrimmon, D. R. & Feldman, J. L. Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat. Neurosci. 4, 927–930 (2001).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • McKay, L. C., Janczewski, W. A. & Feldman, J. L. Sleep-disordered breathing after targeted ablation of preBötzinger complex neurons. Nat. Neurosci. 8, 1142–1144 (2005).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Wenninger, J. M. et al. Small reduction of neurokinin-1 receptor-expressing neurons in the pre-Bötzinger complex area induces abnormal breathing periods in awake goats. J. Appl. Physiol. 97, 1620–1628 (2004).

      PubMed
      Article
      CAS

      Google Scholar

    • Tan, W. et al. Silencing preBötzinger Complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat. Neurosci. 11, 538–540 (2008).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Stornetta, R. L., Sevigny, C. P. & Guyenet, P. G. Inspiratory augmenting bulbospinal neurons express both glutamatergic and enkephalinergic phenotypes. J. Comp. Neurol. 455, 113–124 (2003).

      PubMed
      Article
      CAS

      Google Scholar

    • Guyenet, P. G., Sevigny, C. P., Weston, M. C. & Stornetta, R. L. Neurokinin-1 receptor-expressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic. J. Neurosci. 22, 3806–3816 (2002).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Coveñas, R. et al. Mapping of neurokinin-like immunoreactivity in the human brainstem. BMC Neurosci. 4, 3 (2003).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Liu, Y. Y., Ju, G. & Wong-Riley, M. T. Distribution and colocalization of neurotransmitters and receptors in the pre-Bötzinger complex of rats. J. Appl. Physiol. 91, 1387–1395 (2001).

      PubMed
      Article
      CAS

      Google Scholar

    • Fukuda, H., Nakamura, E., Koga, T., Furukawa, N. & Shiroshita, Y. The site of the anti-emetic action of tachykinin NK1 receptor antagonists may exist in the medullary area adjacent to the semicompact part of the nucleus ambiguus. Brain Res. 818, 439–449 (1999).

      PubMed
      Article
      CAS

      Google Scholar

    • Nakaya, Y., Kaneko, T., Shigemoto, R., Nakanishi, S. & Mizuno, N. Immunohistochemical localization of substance P receptor in the central nervous system of the adult rat. J. Comp. Neurol. 347, 249–274 (1994).

      PubMed
      Article
      CAS

      Google Scholar

    • Yamamoto, Y., Onimaru, H. & Homma, I. Effect of substance P on respiratory rhythm and pre-inspiratory neurons in the ventrolateral structure of rostral medulla oblongata: an in vitro study. Brain Res. 599, 272–276 (1992).

      PubMed
      Article
      CAS

      Google Scholar

    • Le Gal, J.-P., Juvin, L., Cardoit, L., Thoby-Brisson, M. & Morin, D. Remote control of respiratory neural network by spinal locomotor generators. PLOS ONE 9, e89670 (2014).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Tan, W. et al. Reelin demarcates a subset of pre-Bötzinger complex neurons in adult rat. J. Comp. Neurol. 520, 606–619 (2012).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Cui, Y. et al. Defining preBötzinger Complex rhythm- and pattern-generating neural microcircuits in vivo. Neuron 91, 602–614 (2016).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Koizumi, H. et al. Voltage-dependent rhythmogenic property of respiratory pre-Bötzinger complex glutamatergic, Dbx1-derived, and somatostatin-expressing neuron populations revealed by graded optogenetic inhibition. eNeuro https://doi.org/10.1523/eneuro.0081-16.2016 (2016).

    • Moore, J. D. et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497, 205–210 (2013). This work shows that preBötC-driven inspiratory rhythms act as a master oscillator for orofacial behaviours.

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Moore, J. D., Kleinfeld, D. & Wang, F. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci. 37, 370–380 (2014).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Kottick, A., Martin, C. A. & Del Negro, C. A. Fate mapping neurons and glia derived from Dbx1-expressing progenitors in mouse preBötzinger complex. Physiol. Rep. 5, e13300 (2017).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Bouvier, J. et al. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat. Neurosci. 13, 1066–1074 (2010).

      PubMed
      Article
      CAS

      Google Scholar

    • Gray, P. A. et al. Developmental origin of preBötzinger Complex respiratory neurons. J. Neurosci. 30, 14883–14895 (2010). This work, in conjunction with Ref. 44, shows that rhythmogenic preBötC neurons in perinatal mice are derived from DBX1-expressing precursors.

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Picardo, M. C. D., Weragalaarachchi, K. T. H., Akins, V. T. & Del Negro, C. A. Physiological and morphological properties of Dbx1-derived respiratory neurons in the pre-Bötzinger complex of neonatal mice. J. Physiol. 591, 2687–2703 (2013).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Vann, N. C., Pham, F. D., Hayes, J. A., Kottick, A. & Del Negro, C. A. Transient suppression of Dbx1 preBötzinger interneurons disrupts breathing in adult mice. PLOS ONE 11, e0162418 (2016).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Wang, X. et al. Laser ablation of Dbx1 neurons in the pre-Bötzinger complex stops inspiratory rhythm and impairs output in neonatal mice. eLife 3, e03427 (2014).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Pagliardini, S., Greer, J. J., Funk, G. D. & Dickson, C. T. State-dependent modulation of breathing in urethane-anesthetized rats. J. Neurosci. 32, 11259–11270 (2012).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Saini, J. K. & Pagliardini, S. Breathing during sleep in the postnatal period of rats: the contribution of active expiration. Sleep https://doi.org/10.1093/sleep/zsx172 (2017).

    • Andrews, C. G. & Pagliardini, S. Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats. J. Appl. Physiol. 119, 968–974 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Rekling, J. C., Funk, G. D., Bayliss, D. A., Dong, X. W. & Feldman, J. L. Synaptic control of motoneuronal excitability. Physiol. Rev. 80, 767–852 (2000).

      PubMed
      Article
      CAS

      Google Scholar

    • Burke, P. G. R. et al. State-dependent control of breathing by the retrotrapezoid nucleus. J. Physiol. 593, 2909–2926 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Boutin, R. C. T., Alsahafi, Z. & Pagliardini, S. Cholinergic modulation of the parafacial respiratory group. J. Physiol. 595, 1377–1392 (2016).

    • Mellen, N. M., Janczewski, W. A., Bocchiaro, C. M. & Feldman, J. L. Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37, 821–826 (2003).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Janczewski, W. A. & Feldman, J. L. Distinct rhythm generators for inspiration and expiration in the juvenile rat. J. Physiol. 570, 407–420 (2006).

      PubMed
      Article
      CAS

      Google Scholar

    • Huckstepp, R. T. R., Cardoza, K. P., Henderson, L. E. & Feldman, J. L. Role of parafacial nuclei in control of breathing in adult rats. J. Neurosci. 35, 1052–1067 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Huckstepp, R. T., Henderson, L. E., Cardoza, K. P. & Feldman, J. L. Interactions between respiratory oscillators in adult rats. eLife 5, e14203 (2016).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Guyenet, P. G. & Bayliss, D. A. Neural control of breathing and CO2 homeostasis. Neuron 87, 946–961 (2015). This is a comprehensive review of chemosensation in the pF

      V
      (that is, the RTN).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Guyenet, P. G. et al. Proton detection and breathing regulation by the retrotrapezoid nucleus. J. Physiol. 594, 1529–1551 (2016).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Feldman, J. L., Mitchell, G. S. & Nattie, E. E. Breathing: rhythmicity, plasticity, chemosensitivity. Annu. Rev. Neurosci. 26, 239–266 (2003).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Gourine, A. V. et al. Astrocytes control breathing through pH-dependent release of ATP. Science 329, 571–575 (2010).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Wenker, I. C., Kréneisz, O., Nishiyama, A. & Mulkey, D. K. Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism. J. Neurophysiol. 104, 3042–3052 (2010).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Rose, M. F. et al. Math1 is essential for the development of hindbrain neurons critical for perinatal breathing. Neuron 64, 341–354 (2009).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Dubreuil, V. et al. Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J. Neurosci. 29, 14836–14846 (2009).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Onimaru, H. & Homma, I. A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J. Neurosci. 23, 1478–1486 (2003).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Onimaru, H., Ikeda, K. & Kawakami, K. CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J. Neurosci. 28, 12845–12850 (2008).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Ruffault, P.-L. et al. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2. eLife 4, e07051 (2015).

      PubMed Central
      Article
      CAS

      Google Scholar

    • Thoby-Brisson, M. et al. Genetic identification of an embryonic parafacial oscillator coupling to the preBötzinger complex. Nat. Neurosci. 12, 1028–1035 (2009).

      PubMed
      Article
      CAS

      Google Scholar

    • Fortuna, M. G., West, G. H., Stornetta, R. L. & Guyenet, P. G. Bötzinger expiratory-augmenting neurons and the parafacial respiratory group. J. Neurosci. 28, 2506–2515 (2008).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Stornetta, R. L. et al. Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J. Neurosci. 26, 10305–10314 (2006).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Kang, B. J. et al. Central nervous system distribution of the transcription factor Phox2b in the adult rat. J. Comp. Neurol. 503, 627–641 (2007).

      PubMed
      Article
      CAS

      Google Scholar

    • Abbott, S. B. G. et al. Selective optogenetic activation of rostral ventrolateral medullary catecholaminergic neurons produces cardiorespiratory stimulation in conscious mice. J. Neurosci. 33, 3164–3177 (2013).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Abbott, S. B. G., Stornetta, R. L., Coates, M. B. & Guyenet, P. G. Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats. J. Neurosci. 31, 16410–16422 (2011).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Holloway, B. B., Viar, K. E., Stornetta, R. L. & Guyenet, P. G. The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. Eur. J. Neurosci. 42, 2271–2282 (2015).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Ikeda, K. et al. A Phox2b BAC transgenic rat line useful for understanding respiratory rhythm generator neural circuitry. PLOS ONE 10, e0132475 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Abbott, S. B. G. et al. Photostimulation of retrotrapezoid nucleus Phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J. Neurosci. 29, 5806–5819 (2009).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Bochorishvili, G., Stornetta, R. L., Coates, M. B. & Guyenet, P. G. Pre-Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons. J. Comp. Neurol. 520, 1047–1061 (2012).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Rosin, D. L., Chang, D. A. & Guyenet, P. G. Afferent and efferent connections of the rat retrotrapezoid nucleus. J. Comp. Neurol. 499, 64–89 (2006).

      PubMed
      Article

      Google Scholar

    • Abdala, A. P. L., Rybak, I. A., Smith, J. C. & Paton, J. F. R. Abdominal expiratory activity in the rat brainstem–spinal cord in situ: patterns, origins and implications for respiratory rhythm generation. J. Physiol. 587, 3539–3559 (2009).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Moraes, D. J. A., Dias, M. B., Cavalcanti-Kwiatkoski, R., Machado, B. H. & Zoccal, D. B. Contribution of the retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats. J. Neurophysiol. 108, 882–890 (2012).

      PubMed
      Article

      Google Scholar

    • Marina, N. et al. Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration. J. Neurosci. 30, 12466–12473 (2010).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Pagliardini, S. et al. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J. Neurosci. 31, 2895–2905 (2011). This report demonstrates active expiratory functions of the pF

      L
      .

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Shi, Y. et al. Neuromedin B expression defines the mouse retrotrapezoid nucleus. J. Neurosci. 37, 11744–11757 (2017).

      PubMed
      Article
      PubMed Central
      CAS

      Google Scholar

    • Janczewski, W. A., Onimaru, H., Homma, I. & Feldman, J. L. Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat. J. Physiol. 545, 1017–1026 (2002).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Silva, J. N., Tanabe, F. M., Moreira, T. S. & Takakura, A. C. Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats. Respir. Physiol. Neurobiol. 227, 9–22 (2016).

      PubMed
      Article

      Google Scholar

    • Takeda, S. et al. Opioid action on respiratory neuron activity of the isolated respiratory network in newborn rats. Anesthesiology 95, 740–749 (2001).

      PubMed
      Article
      CAS

      Google Scholar

    • Sears, T. A., Berger, A. J. & Phillipson, E. A. Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives. Nature 299, 728–730 (1982).

      PubMed
      Article
      CAS

      Google Scholar

    • Tuck, S. A., Dort, J. C. & Remmers, J. E. Braking of expiratory airflow in obese pigs during wakefulness and sleep. Respir. Physiol. 128, 241–245 (2001).

      PubMed
      Article
      CAS

      Google Scholar

    • Dutschmann, M., Jones, S. E., Subramanian, H. H., Stanic, D. & Bautista, T. G. The physiological significance of postinspiration in respiratory control. Prog. Brain Res. 212, 113–130 (2014).

      PubMed
      Article

      Google Scholar

    • Pitts, T. et al. Coordination of cough and swallow: a meta-behavioral response to aspiration. Respir. Physiol. Neurobiol. 189, 543–551 (2013).

      PubMed
      Article

      Google Scholar

    • Shannon, R. et al. Production of reflex cough by brainstem respiratory networks. Pulm. Pharmacol. Ther. 17, 369–376 (2004).

      PubMed
      Article
      CAS

      Google Scholar

    • Smith Hammond, C. A. et al. Predicting aspiration in patients with ischemic stroke: comparison of clinical signs and aerodynamic measures of voluntary cough. Chest 135, 769–777 (2009).

      PubMed
      Article

      Google Scholar

    • Bautista, T. G., Sun, Q.-J. & Pilowsky, P. M. The generation of pharyngeal phase of swallow and its coordination with breathing: interaction between the swallow and respiratory central pattern generators. Prog. Brain Res. 212, 253–275 (2014).

      PubMed
      Article

      Google Scholar

    • Wheeler Hegland, K., Huber, J. E., Pitts, T., Davenport, P. W. & Sapienza, C. M. Lung volume measured during sequential swallowing in healthy young adults. J. Speech Lang. Hear. Res. 54, 777–786 (2011).

      PubMed
      Article

      Google Scholar

    • Jean, A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol. Rev. 81, 929–969 (2001).

      PubMed
      Article
      CAS

      Google Scholar

    • Pitts, T. et al. Impact of expiratory muscle strength training on voluntary cough and swallow function in Parkinson disease. Chest 135, 1301–1308 (2009).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Hernandez-Miranda, L. R. et al. Genetic identification of a hindbrain nucleus essential for innate vocalization. Proc. Natl Acad. Sci. USA 114, 8095–8100 (2017).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Richter, D. W. & Spyer, K. M. Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci. 24, 464–472 (2001).

      PubMed
      Article
      CAS

      Google Scholar

    • Smith, J. C., Abdala, A. P. L., Borgmann, A., Rybak, I. A. & Paton, J. F. R. Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 36, 152–162 (2013).

      PubMed
      Article
      CAS

      Google Scholar

    • Smith, J. C., Abdala, A. P. L., Koizumi, H., Rybak, I. A. & Paton, J. F. R. Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. J. Neurophysiol. 98, 3370–3387 (2007).

      PubMed
      Article
      CAS

      Google Scholar

    • Richter, D. in Comprehensive Human Physiology: from Cellular Mechanisms to Integration (eds Greger, R. & Windhorst, U.) 2079–2095 (Springer, 1996).

    • Dutschmann, M. & Herbert, H. The Kölliker-Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off-switch and upper airway resistance in rat. Eur. J. Neurosci. 24, 1071–1084 (2006).

      PubMed
      Article

      Google Scholar

    • Dutschmann, M. & Dick, T. E. Pontine mechanisms of respiratory control. Compr. Physiol. 2, 2443–2469 (2012).

      PubMed
      PubMed Central

      Google Scholar

    • Poon, C.-S. & Song, G. Bidirectional plasticity of pontine pneumotaxic postinspiratory drive: implication for a pontomedullary respiratory central pattern generator. Prog. Brain Res 209, 235–254 (2014).

      PubMed
      Article

      Google Scholar

    • Anderson, T. M. et al. A novel excitatory network for the control of breathing. Nature 536, 76–80 (2016). This paper proposes that an autonomous postinspiratory oscillator circuit in the rostral medulla ordinarily couples with the preBötC during breathing to aid in inspiratory–expiratory phase transition.

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Ezure, K. & Tanaka, I. GABA, in some cases together with glycine, is used as the inhibitory transmitter by pump cells in the Hering-Breuer reflex pathway of the rat. Neuroscience 127, 409–417 (2004).

      PubMed
      Article
      CAS

      Google Scholar

    • Ezure, K., Tanaka, I. & Kondo, M. Glycine is used as a transmitter by decrementing expiratory neurons of the ventrolateral medulla in the rat. J. Neurosci. 23, 8941–8948 (2003).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Tian, G. F., Peever, J. H. & Duffin, J. Mutual inhibition between Bötzinger-complex bulbospinal expiratory neurons detected with cross-correlation in the decerebrate rat. Exp. Brain Res. 125, 440–446 (1999).

      PubMed
      Article
      CAS

      Google Scholar

    • Tian, G. F., Peever, J. H. & Duffin, J. Bötzinger-complex, bulbospinal expiratory neurones monosynaptically inhibit ventral-group respiratory neurones in the decerebrate rat. Exp. Brain Res. 124, 173–180 (1999).

      PubMed
      Article
      CAS

      Google Scholar

    • Kam, K., Worrell, J. W., Janczewski, W. A., Cui, Y. & Feldman, J. L. Distinct inspiratory rhythm and pattern generating mechanisms in the preBötzinger complex. J. Neurosci. 33, 9235–9245 (2013). This paper presents the idea that burstlets, which are subthreshold for motor output, are nonetheless rhythmogenic in the preBötC.

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Stuart, D. G. & Hultborn, H. Thomas Graham Brown (1882–1965), Anders Lundberg (1920-), and the neural control of stepping. Brain Res. Rev. 59, 74–95 (2008).

      PubMed
      Article

      Google Scholar

    • Brown, T. G. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48, 18–46 (1914).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • von Euler, C. On the central pattern generator for the basic breathing rhythmicity. J. Appl. Physiol. 55, 1647–1659 (1983).

      Article

      Google Scholar

    • Feldman, J. L. in Handbook of Physiology 463–524 (American Physiology Society, 1986).

    • Feldman, J. L. & Smith, J. C. Cellular mechanisms underlying modulation of breathing pattern in mammals. Ann. NY Acad. Sci. 563, 114–130 (1989).

      PubMed
      Article
      CAS

      Google Scholar

    • Zhang, W., Barnbrock, A., Gajic, S., Pfeiffer, A. & Ritter, B. Differential ontogeny of GABAB-receptor-mediated pre- and postsynaptic modulation of GABA and glycine transmission in respiratory rhythm-generating network in mouse. J. Physiol. 540, 435–446 (2002).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Brockhaus, J. & Ballanyi, K. Synaptic inhibition in the isolated respiratory network of neonatal rats. Eur. J. Neurosci. 10, 3823–3839 (1998).

      PubMed
      Article
      CAS

      Google Scholar

    • Funk, G. D. & Greer, J. J. The rhythmic, transverse medullary slice preparation in respiratory neurobiology: contributions and caveats. Respir. Physiol. Neurobiol. 186, 236–253 (2013).

      PubMed
      Article

      Google Scholar

    • Richter, D. W. Generation and maintenance of the respiratory rhythm. J. Exp. Biol. 100, 93–107 (1982).

      PubMed
      CAS

      Google Scholar

    • Richter, D. W. & Smith, J. C. Respiratory rhythm generation in vivo. Physiology 29, 58–71 (2014).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Dutschmann, M. & Paton, J. F. R. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. J. Physiol. 543, 643–653 (2002).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Marchenko, V. et al. Perturbations of respiratory rhythm and pattern by disrupting synaptic inhibition within pre-Bötzinger and Bötzinger complexes. eNeuro https://doi.org/10.1523/eneuro.0011-16.2016 (2016).

    • Cregg, J. M., Chu, K. A., Dick, T. E., Landmesser, L. T. & Silver, J. Phasic inhibition as a mechanism for generation of rapid respiratory rhythms. Proc. Natl Acad. Sci. USA 114, 12815–12820 (2017).

      PubMed
      Article
      PubMed Central
      CAS

      Google Scholar

    • Baertsch, N. A., Baertsch, H. C. & Ramirez, J. M. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms. Nat. Commun. 9, 843 (2018).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Janczewski, W. A., Tashima, A., Hsu, P., Cui, Y. & Feldman, J. L. Role of inhibition in respiratory pattern generation. J. Neurosci. 33, 5454–5465 (2013). This paper demonstrates that blockade of inhibition in the preBötC and other sites in the medulla does not stop respiratory rhythm and breathing.

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Sherman, D., Worrell, J. W., Cui, Y. & Feldman, J. L. Optogenetic perturbation of preBötzinger complex inhibitory neurons modulates respiratory pattern. Nat. Neurosci. 18, 408–414 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Del Negro, C. A., Koshiya, N., Butera, R. J. Jr & Smith, J. C. Persistent sodium current, membrane properties and bursting behavior of pre-Bötzinger complex inspiratory neurons in vitro. J. Neurophysiol. 88, 2242–2250 (2002).

      PubMed
      Article

      Google Scholar

    • Del Negro, C. A. et al. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25, 446–453 (2005).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Thoby-Brisson, M. & Ramirez, J. M. Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J. Neurophysiol. 86, 104–112 (2001).

      PubMed
      Article
      CAS

      Google Scholar

    • Peña, F., Parkis, M. A., Tryba, A. K. & Ramirez, J.-M. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43, 105–117 (2004).

      PubMed
      Article

      Google Scholar

    • Rekling, J. C. & Feldman, J. L. PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu. Rev. Physiol. 60, 385–405 (1998).

      PubMed
      Article
      CAS

      Google Scholar

    • Butera, R. J., Rinzel, J. & Smith, J. C. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82, 382–397 (1999).

      PubMed
      Article

      Google Scholar

    • Butera, R. J., Rinzel, J. & Smith, J. C. Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol. 82, 398–415 (1999).

      PubMed
      Article

      Google Scholar

    • Del Negro, C. A., Johnson, S. M., Butera, R. J. & Smith, J. C. Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions. J. Neurophysiol. 86, 59–74 (2001).

      PubMed
      Article

      Google Scholar

    • Koizumi, H. et al. Structural-functional properties of identified excitatory and inhibitory interneurons within pre-Bötzinger complex respiratory microcircuits. J. Neurosci. 33, 2994–3009 (2013).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Morgado-Valle, C., Baca, S. M. & Feldman, J. L. Glycinergic pacemaker neurons in preBötzinger Complex of neonatal mouse. J. Neurosci. 30, 3634–3639 (2010).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Doble, A. The pharmacology and mechanism of action of riluzole. Neurology 47, S233–241 (1996).

      PubMed
      Article
      CAS

      Google Scholar

    • Guinamard, R., Simard, C. & Del Negro, C. Flufenamic acid as an ion channel modulator. Pharmacol. Ther. 138, 272–284 (2013).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Pace, R. W., Mackay, D. D., Feldman, J. L. & Del Negro, C. A. Role of persistent sodium current in mouse preBötzinger Complex neurons and respiratory rhythm generation. J. Physiol. 580, 485–496 (2007).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Paton, J. F. R., Abdala, A. P. L., Koizumi, H., Smith, J. C. & St-John, W. M. Respiratory rhythm generation during gasping depends on persistent sodium current. Nat. Neurosci. 9, 311–313 (2006).

      PubMed
      Article
      CAS

      Google Scholar

    • Koizumi, H. & Smith, J. C. Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro. J. Neurosci. 28, 1773–1785 (2008).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Chevalier, M., Toporikova, N., Simmers, J. & Thoby-Brisson, M. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network. eLife 5, e16125 (2016).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Ramirez, J.-M., Tryba, A. K. & Peña, F. Pacemaker neurons and neuronal networks: an integrative view. Curr. Opin. Neurobiol. 14, 665–674 (2004).

      PubMed
      Article
      CAS

      Google Scholar

    • Grillner, S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006).

      PubMed
      Article
      CAS

      Google Scholar

    • Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4, 573–586 (2003).

      PubMed
      Article
      CAS

      Google Scholar

    • Carroll, M. S. & Ramirez, J.-M. Cycle-by-cycle assembly of respiratory network activity is dynamic and stochastic. J. Neurophysiol. 109, 296–305 (2013).

      PubMed
      Article

      Google Scholar

    • Kam, K., Worrell, J. W., Ventalon, C., Emiliani, V. & Feldman, J. L. Emergence of population bursts from simultaneous activation of small subsets of preBötzinger Complex inspiratory neurons. J. Neurosci. 33, 3332–3338 (2013).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Feldman, J. L. & Del Negro, C. A. Looking for inspiration: new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 7, 232–242 (2006).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Feldman, J. L., Del Negro, C. A. & Gray, P. A. Understanding the rhythm of breathing: so near, yet so far. Annu. Rev. Physiol. 75, 423–452 (2013).

      PubMed
      Article
      CAS

      Google Scholar

    • Feldman, J. L. & Kam, K. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J. Physiol. 593, 3–23 (2015).

      PubMed
      Article
      CAS

      Google Scholar

    • Kam, K. & Feldman, J. L. in Handbook of Brain Microcircuits 2nd edn 624 (Oxford Univ. Press, 2018).

    • Rekling, J. C., Champagnat, J. & Denavit-Saubié, M. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 75, 795–810 (1996).

      PubMed
      Article
      CAS

      Google Scholar

    • Rubin, J. E., Hayes, J. A., Mendenhall, J. L. & Del Negro, C. A. Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc. Natl Acad. Sci. USA 106, 2939–2944 (2009).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Krey, R. A., Goodreau, A. M., Arnold, T. B. & Del Negro, C. A. Outward currents contributing to inspiratory burst termination in preBötzinger Complex neurons of neonatal mice studied in vitro. Front. Neural Circuits 4, 124 (2010).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Kottick, A. & Del Negro, C. A. Synaptic depression influences inspiratory-expiratory phase transition in Dbx1 interneurons of the preBötzinger complex in neonatal mice. J. Neurosci. 35, 11606–11611 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Mironov, S. L. Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. J. Physiol. 586, 2277–2291 (2008).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Del Negro, C. A., Kam, K., Hayes, J. A. & Feldman, J. L. Asymmetric control of inspiratory and expiratory phases by excitability in the respiratory network of neonatal mice in vitro. J. Physiol. 587, 1217–1231 (2009).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Orlovskiı˘, G. N. Neuronal Control of Locomotion: from Mollusc to Man. (Oxford Univ. Press, 1999).

    • Lu, B. et al. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129, 371–383 (2007).

      PubMed
      Article
      CAS

      Google Scholar

    • Lu, B. et al. Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Neuron 68, 488–499 (2010).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Lu, B. et al. Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature 457, 741–744 (2009).

      PubMed
      Article

      Google Scholar

    • Yeh, S.-Y. et al. Respiratory network stability and modulatory response to substance P require Nalcn. Neuron 94, 294–303.e4 (2017).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Ono, T., Ishiwata, Y., Inaba, N., Kuroda, T. & Nakamura, Y. Hypoglossal premotor neurons with rhythmical inspiratory-related activity in the cat: localization and projection to the phrenic nucleus. Exp. Brain Res. 98, 1–12 (1994).

      PubMed
      Article
      CAS

      Google Scholar

    • Dobbins, E. G. & Feldman, J. L. Differential innervation of protruder and retractor muscles of the tongue in rat. J. Comp. Neurol. 357, 376–394 (1995).

      PubMed
      Article
      CAS

      Google Scholar

    • Ellenberger, H. H. & Feldman, J. L. Brainstem connections of the rostral ventral respiratory group of the rat. Brain Res. 513, 35–42 (1990).

      PubMed
      Article
      CAS

      Google Scholar

    • Koizumi, H. et al. Functional imaging, spatial reconstruction, and biophysical analysis of a respiratory motor circuit isolated in vitro. J. Neurosci. 28, 2353–2365 (2008).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Stanek, E. 4th, Cheng, S., Takatoh, J., Han, B.-X. & Wang, F. Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 3, e02511 (2014).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Revill, A. L. et al. Dbx1 precursor cells are a source of inspiratory XII premotoneurons. eLife 4, e12301 (2015).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Song, H. et al. Functional interactions between mammalian respiratory rhythmogenic and premotor circuitry. J. Neurosci. 36, 7223–7233 (2016).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Rekling, J. C., Shao, X. M. & Feldman, J. L. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBötzinger complex. J. Neurosci. 20, RC113 (2000).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Guerrier, C., Hayes, J. A., Fortin, G. & Holcman, D. Robust network oscillations during mammalian respiratory rhythm generation driven by synaptic dynamics. Proc. Natl Acad. Sci. USA 112, 9728–9733 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Hayes, J. A., Wang, X. & Del Negro, C. A. Cumulative lesioning of respiratory interneurons disrupts and precludes motor rhythms in vitro. Proc. Natl Acad. Sci. USA 109, 8286–8291 (2012).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Pace, R. W., Mackay, D. D., Feldman, J. L. & Del Negro, C. A. Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J. Physiol. 582, 113–125 (2007).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Crowder, E. A. et al. Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J. Physiol. 582, 1047–1058 (2007).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Morquette, P. et al. An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat. Neurosci. 18, 844–854 (2015).

      PubMed
      Article
      CAS

      Google Scholar

    • Hülsmann, S., Oku, Y., Zhang, W. & Richter, D. W. Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse. Eur. J. Neurosci. 12, 856–862 (2000).

      PubMed
      Article

      Google Scholar

    • Huxtable, A. G. et al. Glia contribute to the purinergic modulation of inspiratory rhythm-generating networks. J. Neurosci. 30, 3947–3958 (2010).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Okada, Y. et al. Preinspiratory calcium rise in putative pre-Botzinger complex astrocytes. J. Physiol. 590, 4933–4944 (2012).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Angelova, P. R. et al. Functional oxygen sensitivity of astrocytes. J. Neurosci. 35, 10460–10473 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Rajani, V. et al. Release of ATP by pre-Bötzinger complex astrocytes contributes to the hypoxic ventilatory response via a Ca2+ -dependent P2Y1 receptor mechanism. J. Physiol. 589, 4583–4600 (2017).

    • Travers, J. B., DiNardo, L. A. & Karimnamazi, H. Medullary reticular formation activity during ingestion and rejection in the awake rat. Exp. Brain Res. 130, 78–92 (2000).

      PubMed
      Article
      CAS

      Google Scholar

    • Welzl, H. & Bures, J. Lick-synchronized breathing in rats. Physiol. Behav. 18, 751–753 (1977).

      PubMed
      Article
      CAS

      Google Scholar

    • Kleinfeld, D., Deschênes, M., Wang, F. & Moore, J. D. More than a rhythm of life: breathing as a binder of orofacial sensation. Nat. Neurosci. 17, 647–651 (2014).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Kurnikova, A., Moore, J. D., Liao, S.-M., Deschênes, M. & Kleinfeld, D. Coordination of orofacial motor actions into exploratory behavior by rat. Curr. Biol. 27, 688–696 (2017).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Nguyen Chi, V. et al. Hippocampal respiration-driven rhythm distinct from theta oscillations in awake mice. J. Neurosci. 36, 162–177 (2016).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Grion, N., Akrami, A., Zuo, Y., Stella, F. & Diamond, M. E. Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination. PLoS Biol. 14, e1002384 (2016).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Zelano, C. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 36, 12448–12467 (2016).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Li, P. et al. The peptidergic control circuit for sighing. Nature 530, 293–297 (2016). This report demonstrates that pF peptidergic neurons project to the preBötC to influence physiological sighing behaviour.

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Stornetta, R. L. Identification of neurotransmitters and co-localization of transmitters in brainstem respiratory neurons. Respir. Physiol. Neurobiol. 164, 18–27 (2008).

      PubMed
      Article
      CAS

      Google Scholar

    • Dubreuil, V. et al. A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc. Natl Acad. Sci. USA 105, 1067–1072 (2008).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Li, P. & Yackle, K. Sighing. Curr. Biol. 27, R88–R89 (2017).

      PubMed
      Article
      CAS

      Google Scholar

    • Lieske, S. P., Thoby-Brisson, M., Telgkamp, P. & Ramirez, J. M. Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat. Neurosci. 3, 600–607 (2000).

      PubMed
      Article
      CAS

      Google Scholar

    • Ruangkittisakul, A. et al. Generation of eupnea and sighs by a spatiochemically organized inspiratory network. J. Neurosci. 28, 2447–2458 (2008).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Boiten, F. A., Frijda, N. H. & Wientjes, C. J. Emotions and respiratory patterns: review and critical analysis. Int. J. Psychophysiol. 17, 103–128 (1994).

      PubMed
      Article
      CAS

      Google Scholar

    • Arch, J. J. & Craske, M. G. Mechanisms of mindfulness: emotion regulation following a focused breathing induction. Behav. Res. Ther. 44, 1849–1858 (2006).

      PubMed
      Article

      Google Scholar

    • Brown, R. P. & Gerbarg, P. L. Sudarshan Kriya Yogic breathing in the treatment of stress, anxiety, and depression. Part II — clinical applications and guidelines. J. Altern. Complement. Med. 11, 711–717 (2005).

      PubMed
      Article

      Google Scholar

    • Brown, R. P., Gerbarg, P. L. & Muench, F. Breathing practices for treatment of psychiatric and stress-related medical conditions. Psychiatr. Clin. North Am. 36, 121–140 (2013).

      PubMed
      Article

      Google Scholar

    • Descilo, T. et al. Effects of a yoga breath intervention alone and in combination with an exposure therapy for post-traumatic stress disorder and depression in survivors of the 2004 South-East Asia tsunami. Acta Psychiatr. Scand. 121, 289–300 (2010).

      PubMed
      Article
      CAS

      Google Scholar

    • Jella, S. A. & Shannahoff-Khalsa, D. S. The effects of unilateral forced nostril breathing on cognitive performance. Int. J. Neurosci. 73, 61–68 (1993).

      PubMed
      Article
      CAS

      Google Scholar

    • Katzman, M. A. et al. A multicomponent yoga-based, breath intervention program as an adjunctive treatment in patients suffering from generalized anxiety disorder with or without comorbidities. Int. J. Yoga 5, 57–65 (2012).

      PubMed
      PubMed Central
      Article

      Google Scholar

    • Paul, N. A., Stanton, S. J., Greeson, J. M., Smoski, M. J. & Wang, L. Psychological and neural mechanisms of trait mindfulness in reducing depression vulnerability. Soc. Cogn. Affect. Neurosci. 8, 56–64 (2013).

      PubMed
      Article

      Google Scholar

    • Zeidan, F., Johnson, S. K., Diamond, B. J., David, Z. & Goolkasian, P. Mindfulness meditation improves cognition: evidence of brief mental training. Conscious Cogn. 19, 597–605 (2010).

      PubMed
      Article

      Google Scholar

    • Carreno, F. R. & Frazer, A. Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics 14, 716–727 (2017).

      PubMed
      Article
      PubMed Central

      Google Scholar

    • Masaoka, Y., Izumizaki, M. & Homma, I. Where is the rhythm generator for emotional breathing? Prog. Brain Res. 209, 367–377 (2014).

      PubMed
      Article

      Google Scholar

    • Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. (Massachusetts Institute of Technology Press, 2001).

    • Pathmanathan, P. & Gray, R. A. Verification of computational models of cardiac electro-physiology. Int. J. Num Method. Biomed. Eng. 30, 525–544 (2013).

      Article

      Google Scholar

    • Carroll, M. S., Viemari, J.-C. & Ramirez, J.-M. Patterns of inspiratory phase-dependent activity in the in vitro respiratory network. J. Neurophysiol. 109, 285–295 (2013).

      PubMed
      Article

      Google Scholar

    • Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004).

      PubMed
      Article
      CAS

      Google Scholar

    • Alsahafi, Z., Dickson, C. T. & Pagliardini, S. Optogenetic excitation of preBötzinger complex neurons potently drives inspiratory activity in vivo. J. Physiol. 593, 3673–3692 (2015).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Del Negro, C. A., Morgado-Valle, C. & Feldman, J. L. Respiratory rhythm: an emergent network property? Neuron 34, 821–830 (2002).

      PubMed
      Article

      Google Scholar

    • Purvis, L. K., Smith, J. C., Koizumi, H. & Butera, R. J. Intrinsic bursters increase the robustness of rhythm generation in an excitatory network. J. Neurophysiol. 97, 1515–1526 (2007).

      PubMed
      Article
      CAS

      Google Scholar

    • Smith, J. C. et al. Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir. Physiol. 122, 131–147 (2000).

      PubMed
      Article
      CAS

      Google Scholar

    • Song, H., Hayes, J. A., Vann, N. C., Drew LaMar, M. & Del Negro, C. A. Mechanisms leading to rhythm cessation in the respiratory preBötzinger complex due to piecewise cumulative neuronal deletions. eNeuro https://doi.org/10.1523/eneuro.0031-15.2015 (2015).

    • Schwab, D. J., Bruinsma, R. F., Feldman, J. L. & Levine, A. J. Rhythmogenic neuronal networks, emergent leaders, and k-cores. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 051911 (2010).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    • Webb, P. W. Synchrony of locomotion and ventilation in Cymatogaster aggregata. Can. J. Zool. 53, 904–907 (1975).

      Article

      Google Scholar

    • Wegner, N. C., Sepulveda, C. A., Aalbers, S. A. & Graham, J. B. Structural adaptations for ram ventilation: gill fusions in scombrids and billfishes. J. Morphol. 274, 108–120 (2013).

      PubMed
      Article

      Google Scholar

    • Wang, T., Carrier, D. R. & Hicks, J. W. Ventilation and gas exchange in lizards during treadmill exercise. J. Exp. Biol. 200, 2629–2639 (1997).

      PubMed
      CAS

      Google Scholar

    • Bramble, D. M. & Carrier, D. R. Running and breathing in mammals. Science 219, 251–256 (1983).

      PubMed
      Article
      CAS

      Google Scholar

    • Funk, G. D., Steeves, J. D. & Milsom, W. K. Coordination of wingbeat and respiration in birds. II. ‘Fictive’ flight. J. Appl. Physiol. 73, 1025–1033 (1992).

      PubMed
      Article
      CAS

      Google Scholar

    • Perségol, L., Jordan, M., Viala, D. & Fernandez, C. Evidence for central entrainment of the medullary respiratory pattern by the locomotor pattern in the rabbit. Exp. Brain Res. 71, 153–162 (1988).

      PubMed
      Article

      Google Scholar

    • Funk, G. D., Milsom, W. K. & Steeves, J. D. Coordination of wingbeat and respiration in the Canada goose. I. Passive wing flapping. J. Appl. Physiol. 73, 1014–1024 (1992).

      PubMed
      Article
      CAS

      Google Scholar

    • Funk, G. D., Valenzuela, I. I. & Milsom, W. K. Energetic consequences of coordinating wingbeat and respiratory rhythms in birds. J. Exp. Biol. 200, 915–920 (1997).

      PubMed
      CAS

      Google Scholar

    • Potts, J. T., Rybak, I. A. & Paton, J. F. R. Respiratory rhythm entrainment by somatic afferent stimulation. J. Neurosci. 25, 1965–1978 (2005).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Lancaster, W. C., Henson, O. W. & Keating, A. W. Respiratory muscle activity in relation to vocalization in flying bats. J. Exp. Biol. 198, 175–191 (1995).

      PubMed
      CAS

      Google Scholar

    • Speakman, J. R. & Racey, P. A. No cost of echolocation for bats in flight. Nature 350, 421–423 (1991).

      PubMed
      Article
      CAS

      Google Scholar

    • Feldman, J. L. & McCrimmon, D. R. Fundamental Neuroscience 3rd edn (eds Squire, L. R. et al.) 855–872 (Academic Press, 2008).

    • Hayashi, F. & McCrimmon, D. R. Respiratory motor responses to cranial nerve afferent stimulation in rats. Am. J. Physiol. 271, R1054–R1062 (1996).

      PubMed
      CAS

      Google Scholar

    • Jenkin, S. E. M., Milsom, W. K. & Zoccal, D. B. The Kölliker-Fuse nucleus acts as a timekeeper for late-expiratory abdominal activity. Neuroscience 348, 63–72 (2017).

      PubMed
      Article
      CAS

      Google Scholar

    • Pagliardini, S., Ren, J. & Greer, J. J. Ontogeny of the pre-Bötzinger complex in perinatal rats. J. Neurosci. 23, 9575–9584 (2003).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Thoby-Brisson, M., Trinh, J.-B., Champagnat, J. & Fortin, G. Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J. Neurosci. 25, 4307–4318 (2005).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Wallén-Mackenzie, A. et al. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J. Neurosci. 26, 12294–12307 (2006).

      PubMed
      Article
      CAS
      PubMed Central

      Google Scholar

    • Gray, P. A. Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front. Neuroanat. https://doi.org/10.3389/fnana.2013.00007 (2013).

      PubMed
      PubMed Central
      Article
      CAS

      Google Scholar

    ezadeh© 2022 All Right Reserved