by Elazadeh, 0 Comments
Kinchla, R. A. Attention. Annu. Rev. Psychol. 43, 711–742 (1992).
CAS
Article
Google Scholar
Duncan, J. The locus of interference in the perception of simultaneous stimuli. Psychol. Rev. 87, 272–300 (1980).
CAS
Article
Google Scholar
Lin, J. Y., Pype, A. D., Murray, S. O. & Boynton, G. M. Enhanced Memory for Scenes Presented at Behaviorally Relevant Points in Time. PLoS Biol 8, e1000337 (2010).
Article
Google Scholar
Swallow, K. M. & Jiang, Y. V. The Attentional Boost Effect: Transient increases in attention to one task enhance performance in a second task. Cognition 115, 118–132 (2010).
Article
Google Scholar
Turker, H. B. & Swallow, K. M. Attending to behaviorally relevant moments enhances incidental relational memory. Mem. Cognit. 1–16, https://doi.org/10.3758/s13421-018-0846-0 (2018).
Swallow, K. M., Makovski, T. & Jiang, Y. V. The Selection of Events in Time Enhances Activity Throughout Early Visual Cortex. J. Neurophysiol. https://doi.org/10.1152/jn.00472.2012 (2012).
Makovski, T., Swallow, K. M. & Jiang, Y. V. Attending to unrelated targets boosts short-term memory for color arrays. Neuropsychologia 49, 1498–1505 (2011).
Article
Google Scholar
Swallow, K. M. & Jiang, Y. V. Perceptual load and attentional boost: A study of their interaction. J. Exp. Psychol. Hum. Percept. Perform. 40, 1034–1045 (2014).
Article
Google Scholar
Spataro, P., Mulligan, N. W. & Rossi-Arnaud, C. Divided Attention Can Enhance Memory Encoding: The Attentional Boost Effect in Implicit Memory. J. Exp. Psychol. Learn. Mem. Cogn. 1223–1231, https://doi.org/10.1037/a0030907 (2013).
Mulligan, N. W., Spataro, P. & Picklesimer, M. The attentional boost effect with verbal materials. J. Exp. Psychol. Learn. Mem. Cogn. 40, 1049–1063 (2014).
Article
Google Scholar
Swallow, K. M. & Atir, S. The role of value in the attentional boost effect. Q. J. Exp. Psychol. 1747021818760791, https://doi.org/10.1177/1747021818760791 (2018).
Mulligan, N. W. & Spataro, P. Divided Attention Can Enhance Early-Phase Memory Encoding: The Attentional Boost Effect and Study Trial Duration. J. Exp. Psychol. Learn. Mem. Cogn. https://doi.org/10.1037/xlm0000055 (2014).
Spataro, P., Mulligan, N. W. & Rossi-Arnaud, C. Limits to the attentional boost effect: the moderating influence of orthographic distinctiveness. Psychon. Bull. Rev. 1–6, https://doi.org/10.3758/s13423-014-0767-2 (2014).
Swallow, K. M. & Jiang, Y. V. Attentional Load and Attentional Boost: A Review of Data and Theory. Front. Psychol. 4 (2013).
Smith, S. A. & Mulligan, N. W. Distinctiveness and the attentional boost effect. J. Exp. Psychol. Learn. Mem. Cogn. 44, 1464–1473 (2018).
Article
Google Scholar
Swallow, K. M. & Jiang, Y. V. The attentional boost effect really is a boost: Evidence from a new baseline. Atten. Percept. Psychophys. 1–10, https://doi.org/10.3758/s13414-014-0677-4 (2014).
Swallow, K. M. & Jiang, Y. V. Goal-Relevant Events Need Not be Rare to Boost Memory for Concurrent Images. Atten. Percept. Psychophys. 74, 70–82 (2012).
Article
Google Scholar
Swallow, K. M. & Jiang, Y. V. The role of timing in the attentional boost effect. Atten. Percept. Psychophys. 73, 389–404 (2011).
Article
Google Scholar
Corbetta, M., Patel, G. & Shulman, G. L. The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron 58, 306–324 (2008).
CAS
Article
Google Scholar
Serences, J. T. et al. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol. Sci. 16, 114–122 (2005).
Article
Google Scholar
Jack, A. I., Shulman, G. L., Snyder, A. Z., McAvoy, M. P. & Corbetta, M. Separate modulations of human V1 associated with spatial attention and task structure. Neuron 51, 135–147 (2006).
CAS
Article
Google Scholar
Sokolov, E. N., Nezlina, N. I., Polyanskii, V. B. & Evtikhin, D. V. The orientating reflex: The ‘targeting reaction’ and ‘searchlight of attention’. Neurosci. Behav. Physiol. 32, 347–362 (2002).
CAS
Article
Google Scholar
Nieuwenhuis, S., Geus, E. J. D. & Aston‐Jones, G. The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology 48, 162–175 (2011).
Article
Google Scholar
Sara, S. J. & Bouret, S. Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal. Neuron 76, 130–141 (2012).
CAS
Article
Google Scholar
Wang, C.-A. & Munoz, D. P. A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr. Opin. Neurobiol. 33, 134–140 (2015).
CAS
Article
Google Scholar
Steiner, G. Z. & Barry, R. J. Pupillary responses and event-related potentials as indices of the orienting reflex: Pupillary responses and ERPs as indices of the OR. Psychophysiology 48, 1648–1655 (2011).
Article
Google Scholar
Kamp, S.-M. & Donchin, E. ERP and pupil responses to deviance in an oddball paradigm: ERP and pupil responses in an oddball paradigm. Psychophysiology 52, 460–471 (2015).
Article
Google Scholar
Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).
CAS
Article
Google Scholar
Nieuwenhuis, S., Gilzenrat, M. S., Holmes, B. D. & Cohen, J. D. The role of the locus coeruleus in mediating the attentional blink: A neurocomputational theory. J. Exp. Psychol. Gen. 134, 291–307 (2005).
Article
Google Scholar
Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M. & Cohen, J. D. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn. Affect. Behav. Neurosci. 10, 252–269 (2010).
Article
Google Scholar
Unsworth, N. & Robison, M. K. A locus coeruleus-norepinephrine account of individual differences in working memory capacity and attention control. Psychon. Bull. Rev. 24, 1282–1311 (2017).
Article
Google Scholar
Brink, R. L., van den, Murphy, P. R. & Nieuwenhuis, S. Pupil Diameter Tracks Lapses of Attention. PLOS ONE 11, e0165274 (2016).
Article
Google Scholar
Aston-Jones, G., Rajkowski, J., Kubiak, P. & Alexinsky, T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 14, 4467–4480 (1994).
CAS
Article
Google Scholar
Rajkowski, J., Majczynski, H., Clayton, E. & Aston-Jones, G. Activation of Monkey Locus Coeruleus Neurons Varies With Difficulty and Performance in a Target Detection Task. J. Neurophysiol. 92, 361–371 (2004).
Article
Google Scholar
Bouret, S. & Sara, S. J. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582 (2005).
CAS
Article
Google Scholar
Grella, S. L. et al. Locus Coeruleus Phasic, But Not Tonic, Activation Initiates Global Remapping in a Familiar Environment. J. Neurosci. 39, 445–455 (2019).
CAS
Article
Google Scholar
Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H. & Balsters, J. H. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum. Brain Mapp. 35, 4140–4154 (2014).
Article
Google Scholar
Joshi, S., Li, Y., Kalwani, R. M. & Gold, J. I. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 89, 221–234 (2016).
CAS
Article
Google Scholar
Breton-Provencher, V. & Sur, M. Active control of arousal by a locus coeruleus GABAergic circuit. Nat. Neurosci. 22, 218 (2019).
Article
Google Scholar
Konishi, M., Brown, K., Battaglini, L. & Smallwood, J. When attention wanders: Pupillometric signatures of fluctuations in external attention. Cognition 168, 16–26 (2017).
Article
Google Scholar
Beatty, J. Phasic Not Tonic Pupillary Responses Vary With Auditory Vigilance Performance. Psychophysiology 19, 167–172 (1982).
CAS
Article
Google Scholar
Chatham, C. H., Frank, M. J. & Munakata, Y. Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proc. Natl. Acad. Sci. 106, 5529–5533 (2009).
ADS
CAS
Article
Google Scholar
Einhäuser, W., Stout, J., Koch, C. & Carter, O. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc. Natl. Acad. Sci. USA 105, 1704–1709 (2008).
ADS
Article
Google Scholar
Knapen, T. et al. Cognitive and Ocular Factors Jointly Determine Pupil Responses under Equiluminance. PLOS ONE 11, e0155574 (2016).
Article
Google Scholar
Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat. Neurosci. 15, 1040–1046 (2012).
CAS
Article
Google Scholar
Privitera, C. M., Renninger, L. W., Carney, T., Klein, S. & Aguilar, M. Pupil dilation during visual target detection. J. Vis. 10, 3–3 (2010).
Article
Google Scholar
Karatekin, C., Couperus, J. W. & Marcus, D. J. Attention allocation in the dual-task paradigm as measured through behavioral and psychophysiological responses. Psychophysiology 41, 175–185 (2004).
Article
Google Scholar
Kahneman, D. Attention and Effort. (Prentice-Hall, 1973).
Wel, P. van der & Steenbergen, H. van. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 1–11, https://doi.org/10.3758/s13423-018-1432-y (2018).
Eldar, E., Cohen, J. D. & Niv, Y. The effects of neural gain on attention and learning. Nat. Neurosci. 16, 1146+ (2013).
CAS
Article
Google Scholar
Mathôt, S., van der Linden, L., Grainger, J. & Vitu, F. The pupillary light response reflects eye-movement preparation. J. Exp. Psychol. Hum. Percept. Perform. 41, 28–35 (2015).
Article
Google Scholar
Mathôt, S., Grainger, J. & Strijkers, K. Pupillary Responses to Words That Convey a Sense of Brightness or Darkness. Psychol. Sci. 28, 1116–1124 (2017).
Article
Google Scholar
Binda, P., Pereverzeva, M. & Murray, S. O. Attention to Bright Surfaces Enhances the Pupillary Light Reflex. J. Neurosci. 33, 2199–2204 (2013).
CAS
Article
Google Scholar
Papesh, M. H., Goldinger, S. D. & Hout, M. C. Memory strength and specificity revealed by pupillometry. Int. J. Psychophysiol. 83, 56–64 (2012).
Article
Google Scholar
Naber, M., Frässle, S., Rutishauser, U. & Einhäuser, W. Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. J. Vis. 13, 11–11 (2013).
Article
Google Scholar
Kafkas, A. & Montaldi, D. Recognition Memory Strength is Predicted by Pupillary Responses at Encoding While Fixation Patterns Distinguish Recollection from Familiarity. Q. J. Exp. Psychol. 64, 1971–1989 (2011).
Article
Google Scholar
Hays, W. Statistics. (Wadsworth Publishing, 1994).
Clark, H. H. The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. J. Verbal Learn. Verbal Behav. 12, 335–359 (1973).
Article
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. Artic. 67, 1–48 (2015).
Google Scholar
Kuznetsova, A., Brockhoff, P. & Christensen, R. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. Artic. 82, 1–26 (2017).
Google Scholar
Clayton, E. C., Rajkowski, J., Cohen, J. D. & Aston-Jones, G. Phasic Activation of Monkey Locus Ceruleus Neurons by Simple Decisions in a Forced-Choice Task. J. Neurosci. 24, 9914–9920 (2004).
CAS
Article
Google Scholar
Chiew, K. S. & Braver, T. S. Positive Affect Versus Reward: Emotional and Motivational Influences on Cognitive Control. Front. Psychol. 2 (2011).
Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39 (2016).
Eldar, E., Niv, Y. & Cohen, J. D. Do You See the Forest or the Tree? Neural Gain and Breadth Versus Focus in Perceptual Processing. Psychol. Sci. 27, 1632–1643 (2016).
Article
Google Scholar
Warren, C. M. et al. Catecholamine-Mediated Increases in Gain Enhance the Precision of Cortical Representations. J. Neurosci. 36, 5699–5708 (2016).
CAS
Article
Google Scholar
Lee, T.-H. et al. Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults. Nat. Hum. Behav. 2, 356–366 (2018).
Article
Google Scholar
Brink, R. L., van den, Nieuwenhuis, S. & Donner, T. H. Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines. J. Neurosci. 38, 7476–7491 (2018).
Article
Google Scholar
Schwarz, L. A. & Luo, L. Organization of the Locus Coeruleus-Norepinephrine System. Curr. Biol. 25, R1051–R1056 (2015).
CAS
Article
Google Scholar
Kebschull, J. M. et al. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA. Neuron 91, 975–987 (2016).
CAS
Article
Google Scholar
Uematsu, A. et al. Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat. Neurosci. 20, nn.4642 (2017).
Article
Google Scholar
Seo, D. & Bruchas, M. R. Polymorphic computation in locus coeruleus networks. Nat. Neurosci. 20, nn.4663 (2017).
Article
Google Scholar
Wang, C.-A., Blohm, G., Huang, J., Boehnke, S. E. & Munoz, D. P. Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biol. Psychol. 129, 36–44 (2017).
Article
Google Scholar
Molen, M. W. V., der, Boomsma, D. I., Jennings, J. R. & Nieuwboer, R. T. Does the Heart Know What the Eye Sees? A Cardiac/Pupillometric Analysis of Motor Preparation and Response Execution. Psychophysiology 26, 70–80 (1989).
Article
Google Scholar
Reimer, J. et al. Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness. Neuron 84, 355–362 (2014).
CAS
Article
Google Scholar
Krauzlis, R. J., Lovejoy, L. P. & Zénon, A. Superior Colliculus and Visual Spatial Attention. Annu. Rev. Neurosci. 36, 165–182 (2013).
CAS
Article
Google Scholar
Kahneman, D. & Beatty, J. Pupil Diameter and Load on Memory. Science 154, 1583–1585 (1966).
ADS
CAS
Article
Google Scholar
Talsma, D. & Woldorff, M. G. Selective Attention and Multisensory Integration: Multiple Phases of Effects on the Evoked Brain Activity. J. Cogn. Neurosci. 17, 1098–1114 (2005).
Article
Google Scholar
Mathôt, S., Siebold, A., Donk, M. & Vitu, F. Large pupils predict goal-driven eye movements. J. Exp. Psychol. Gen. 144, 513–521 (2015).
Article
Google Scholar
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
CAS
Article
Google Scholar
Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).
CAS
Article
Google Scholar
Pelli, D. G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).
CAS
Article
Google Scholar
Mathôt, S., Fabius, J., Van Heusden, E. & Van der Stigchel, S. Safe and sensible preprocessing and baseline correction of pupil-size data. Behav. Res. Methods 50, 94–106 (2018).
Article
Google Scholar
Tuszynski, J. caTools: Tools: moving window statistics, GIF, Base64, ROC AUC, etc. (2018).